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Abstract

This paper describes some current work at the National
Aeronautics and Space Administration (NASA) Goddard
Space Flight Center’s Advanced Architectures and
Automation Branch. Trend analysis refers to the process of
examining data from a physical system, developing a
mathematical model, analyzing the derived information to
formulate an evaluation on the condition of the system, and
determining if dangerous trends can be detected. If a trend
is detected, corrective or preventive actions are pursued.
Our goal is to better understand how to effectively use rule-
based, case-based and model-based reasoning together to
realize a more rigorous and automated trend analysis
capability.  To reach this goal, we plan to develop an
automated system to analyze and predict trends, and
diagnose spacecraft status telemetry data. This paper
describes a concept, architecture and current work in
developing a prototype system, called the Automated
Model-Based Trend Analysis System (AMTAS). This
system uses multimodal reasoning to perform diagnosis
and trend analysis. Model-based reasoning is the primary
reasoning component which is augmented with other forms
of reasoning including rule-based reasoning and case-based
reasoning. This prototype may serve as a basis for a full
system implementation at a later time if successful. We are
in the process of implementing the prototype system using
MATLAB.

Introduction

This paper describes some current work at the National
Aeronautics and Space Administration (NASA) Goddard
Space Flight Center’s Advanced Architectures and
Automation Branch. Traditionally, trend analysis of
spacecraft telemetry data had been a time consuming,
repetitive, and labor intensive activity. Operators inspect
telemetry plots manually to determine the current
spacecraft health. They use some form of statistical
evaluation and comparison with models, but the
evaluations still require extensive human expertise which
is prone to error, and could result in catastrophic failures.

This project attempts to increase the efficiency,
accuracy, and reliability of trend analysis and diagnosis
through multimodal reasoning. It concentrates on using
model-based reasoning but draws on other techniques,
such as case-based and rule-based, to improve results.

Trend analysis is the process of examining incoming
spacecraft telemetry data, developing mathematical
representations of the data, analyzing the derived
information to formulate an evaluation of the condition of
spacecraft components, and determining if dangerous
trends exist. If a dangerous trend is detected, corrective or
preventive measures are identified. Trend analysis is
composed of; identifying a trend that indicates a potential
failure, explaining the trend and the potential failure to
the user, determining corrective action to prevent the
failure from actually occurring, and automatically
executing commands to prevent the failure or notify the
operator.

Trend analysis  may be done on as little as one orbit of
data, but typically is done over long periods of time --
days, months, even years of a spacecraft lifetime.  Trend
analysis may also consider the history of a common
component from one spacecraft to the next in a series.

Multimodal reasoning is used in both fault diagnosis
and trend analysis. Routine problems are handled using
rule-based reasoning. In the event that an automated
recovery action can be performed, the rule-base
component generates the command procedure for
automatic execution or an operator is notified. For
problems that the rule-base component can not solve, a
model-base component is used. For new anomalies, a case-
base component is used to find similar cases and gain
insight into how to solve the new problem. Once the new
problem is resolved, the knowledge-base underlying the
model-based diagnosis is updated, new cases describing
the anomaly with its resolution are stored in the case-base
component, and new rules to handle the new anomaly are
written and incorporated into the rule-based component if



the problem is expected to be repeated frequently.

Two typical sources of knowledge are expert knowledge
and knowledge of past history. Expert knowledge is used
in the initial design of the state model, the expected states,
and underlying probabilistic knowledge that is essential to
the diagnosis process. One of AMTAS goals is to possess
sufficient learning capability to automatically update its
knowledgebase as it gains more experience during real
time operation. Some of the expert knowledge is also
encoded as rules that handle well-understood problems.

Knowledge of past events is stored as cases of anomalies
and trends, and solutions tried with their outcomes, either
successful or not. One of the main barriers to building
such systems is that existing knowledge is typically not
documented in a formal way that can be directly used.
Information must be obtained from human experts. In
addition, a lack of a standard terminology among experts
also contributes to this deficiency, even when the
knowledge is sufficiently documented. Hence, a major step
in building such systems is to develop a standard
terminology so that the documented knowledge is
accurate, concise, and consistent.

Functionality

AMTAS performs the following functions as shown in
Figure 1:

• Spacecraft Model -- Generates expected spacecraft
states and telemetry values given information about the
mode the spacecraft is supposed to be in during the time
span being analyzed.

• Comparison and trend - Compares the expected state
and telemetry values with those observed in order to
locate anomalies, and looks for systematic differences
that could grow to the point where the tolerance is
exceeded.

• Reasoning - When an anomaly is detected or trend is
predicted, a set of hypotheses is determined. These
hypotheses ranked by their likelihood are verified by the
simulator and their solutions determined. Past
experience from stored cases may be used to assist in
this process.

Spacecraft Model:  In state modeling, sets of telemetry
values are grouped together and hierarchically arranged to
represent the state of a component, subsystem, system, or
space vehicle. For example, at the lowest level, the state of
a relay might be represented as two telemetry values. At
the next level, the state of the relay control unit might be
represented as the state of its set of relays, each with its

own telemetry signature. At the next level, the state of the
electrical power system might be defined by the states of
its various parts such as relay control units, batteries,
charge control units, solar arrays, etc. At the highest level,
the state of the entire vehicle might be defined by the
states of all its systems. Therefore, through state
modeling, the status of a component, subsystem, or space
vehicle can be evaluated in real time through telemetry.

Figure 2 illustrates state modeling. In the physical
model, telemetry values indicate the state of a physical
component or subsystem. As shown in the figure, current,
voltage, and temperature indicate the state of the electrical
power system, and temperature indicates the state of the
thermal control subsystem. Normal and anomalous states
can be modeled. Normal battery operation is a normal
state for the electrical power subsystem. Possible cell loss,
overheat, and severe overheat are minor and severe
anomalous states for the electrical power subsystem. If one
of these anomalous states is encountered, an anomaly
resolution procedure is executed, and the electrical power
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subsystem makes a transition from an anomalous state to a
normal state. These procedures are executed automatically
or presented as recommendations to an operator. More
specifically, the state model consists of:

• A set of components of a subsystem connected by a
network that represents the functional relationship
among the components.

• A set of input variables that represent telemetry data.
• A set of output state variables.
• A set of status variables that represent the status of

subsystems or environment, e.g. on/off or night/day.

Comparison and trend: The comparison function
identifies if the deviation between the observed and
expected values for each state variable, lies beyond a
threshold of tolerance.   This function will also
accumulate information on the comparisons, even when
the agreement is acceptable, looking for systematic
differences that could grow to the point where the
tolerance is exceeded.

Finally, although telemetry data are the most frequent
data to be trended, second order quantities such as the
spacecraft altitude or sensor misalignments may also be
trended.  This data enters AMTS along with the telemetry,
but is calculated in other parts of the ground system.

There are several methods for detecting trends in a data
stream.  However, there is no single method that will work
for all data type.  Care must be taken in selecting a
suitable method for each data type.  A thorough
understanding of natural behavior of each data is
essential.  Moreover, the trends for future failure may be
disguised in several different forms, such as gradual
deviation from average value, sudden change in the noise
level, frequency of occurrence of spikes, etc.   Each data
should be analyzed and possible trends identified and
catalogued. For each identified trend, suitable method is
selected. These identified trends will be encoded into the
knowledgebase of the state-model, including initial
hypothesis sets, solution sets and mass functions (see
below). The actual trend analysis process can be processed
real-time or as a batch process.  When the data shows a
trend, the diagnosis process is activated and proceeds as
described below.

Figure 3 shows an example of a trend in spacecraft data.
This example compares the speed of one of the reaction
wheels on the Solar and Heliospheric Observatory
(SOHO) with a model (solid line) based on the expected
attitude motion and solar pressure torque.  The agreement
appears good for the first few days, but a trend of the
wheel decreasing toward the limit of -3000 RPM faster
than expected becomes evident.

Reasoner: The reasoner takes the output of the

comparison function and tries to determine when a failure
will occur, gives a reason for the failure and recommends
a solution. This function is the heart of AMTAS, and in
fact is where this system really parts company with
traditional trend analysis, which incorporates most of
what has been described so far, although in a manual way.
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           Figure 3.  Example Trend Graph

Reasoning Process

In this section, we describe the model-based diagnosis,
which diagnoses both a detected anomaly and a predicted
trend.  The task of this component is to determine the
hypothesis that best describes the problem and its solution.
The reasoning used in this process are the followings:

• Well-understood events are handled by a rule-based
system. In the event that an automated recovery action can
be performed, the rule-based component generates the
command procedure for automatic execution or an
operator is notified.
• Events with incomplete knowledge are handled by a
diagnosis process based on model-based reasoning.
• Human intervention might be needed for unseen
anomalies and trends, in the event that model-based
reasoning fails.

Case-based reasoning is used to improve the diagnosis
performance. Some useful information can be stored in a
case, such as description of subsystems/components,
symptoms of the anomaly, its causes, the action taken to
resolve the anomaly, and the outcome of implementing the
solution. In our implementation, an anomaly case is
composed of a set of anomalous variables or symptoms for
the anomaly, the date and time the anomaly occurred, the
command sequence executed to resolve the anomaly, and
the outcome of executing the command sequence. A trend
case is composed of a pointer to a trend graph, the date
and time the trend was detected, the predicted anomaly,
the recommended resolution, including the command



sequence for resolving it, and the outcome of
implementing the recommended resolution.

Diagnosis component is illustrated in Figure 4. The
larger boxes in the figure indicate the actions performed
and the smaller boxes indicate the component that
performs the action.

The diagnosis component of AMTAS consists of
hypothesis determination and solution determination.

Hypothesis determination searches for a hypothesis that
may explain the anomaly or trend in terms of a set of
faulty components or components that are about to fail
respectively. The efficiencies of combination of
components are varied until the output state matches the
actual anomaly.  Solution determination searches for a
solution of a given hypothesis, by adjusting the mode of
operation of components in the faulty model until the
expected output state is reached. The algorithms of both
processes are the same and we will discuss only the
hypothesis determination in detail.

If the simulation is performed without additional
knowledge of the situation, the search algorithm is
exponential time since the total number of possible
choices of hypotheses is exponential.  Moreover, not every
hypothesis makes physical sense, even though they are
logically possible. This suggests that a probability measure
is needed to curb the complexity of the algorithm and to
avoid unrealistic hypotheses.  This is done as follows: To
each known anomaly, we associate a belief function that
assigns a degree of belief to each hypothesis that may be
responsible for the anomaly. This induces a partial
ordering on the set of hypotheses.  Similarly, at the other
end of the spectrum, a degree of disbelief could also be
given to unlikely hypotheses that do not make physical
sense for that anomaly.  These two measures assign to the
set of all hypotheses a partial order that guides the search
routine.  The most likely hypotheses are evaluated first. If
no match is found, exhaustive search is done on the set of
neutral hypotheses that are neither believed nor

disbelieved.  The last to be evaluated are the unlikely
hypotheses.  If no match is found, it means that the state
model is incomplete and human intervention may be
needed.

Hypothesis determination: The belief function

discussed above is initially given by experts’ probabilistic
knowledge concerning each known anomaly and trend.
This knowledge is given in terms of a set of likely
hypotheses that may be the cause of the anomaly, together
with a belief function on the set. In the beginning, the
hypothesis sets may be incomplete and the belief functions
may be inaccurate. The success of AMTAS depends on
whether the probabilistic knowledge can automatically
revise itself as new knowledge is obtained. We discuss this
in the next section

The belief functions are defined via the Local Dempster-
Shafer (LDS) theory adapted from Dempster-Shafer (DS)
theory described in Dempster (1967) and Shafer (1976).
Let H be a set of components. A subset of H is a
hypothesis. It should be interpreted as a minimum set of
components that claims to be the cause of the anomaly or
trend.  DS theory consists of a mass function on the set of

hypotheses, m H: [ , ]2 0 1→ , which assigns a degree of
belief that supports the extent to which a hypothesis is
believed to be true. The mass function satisfies the
following conditions

a)  m X
X H

( )
⊆
∑ = 1 ,          and             b) m ( )∅ = 0

Two mass functions, m m1 2 and  on H can be combined

into a single mass function as follows:

m X m A m B
A B X

12 1 2( ) ( ) ( )=
∩ =
∑                                           (1)

which may require normalization to guarantee that
conditions a) and b) are simultaneously satisfied.

The belief function associated to the mass function m is
defined as:
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    : [ , ]; ( ) ( )2 0 1→ =
⊆
∑                                   (2)

Having a well-formulated foundation makes DS theory a
suitable choice for an autonomous diagnosis. However,
there are two major drawbacks that must be overcome.
First, the complexity of the DS theory is exponential. Our
solution to this problem is to reduce the size of the domain
by localizing the mass function. This forces us to drop
condition b). Second, the combination of two very
different mass functions usually leads to an unrealistic
result. This is partly due to the exhaustive assumption b)
and hence localization of the mass function seems to
partially minimize this effect.  We consider the “dual” of
DS theory and localize it as follows:

Definition 1. Local Dempster-Shafer (LDS) Theory on a
global domain H consists of a family of triples

{ }A m Ni i i, , where the local domain A i  is a subset of H,

The local mass function m i
Ai: [ , ]2 0 1→  is a function

satisfying condition a), but not necessarily b). N i  is a

positive integer called the sample size of m i .  We identify

a triple with its mass function.
The belief function associated to m i  is defined by:

b b X m Yi
A

i i

Y X

i    : [ , ]; ( ) ( )2 0 1→ =
⊇
∑                               (3)

Two mass functions { }A m Ni i i, , and { }A m Nj j j, , combine

to form a new mass function { }A A m N Ni j ij i j∪ +, , ,  with

m X m A mj Bij i

A B X

( ) ( ) ( )=
∪ =
∑                                             (4)

In the hypothesis determination process, the triples in the
LDS theory are indexed by the set of all anomalous states
and identified trends. The mass function of multiple
anomalies is the combination of mass functions associated
to each anomaly.  When one or more anomalous states are
detected, the belief function associated to the combined
mass function defines the required partial order on the
hypothesis set. As discussed above, LDS theory can be
applied to avoid unrealistic hypothesis by defining a
degree of disbelief to unlikely hypotheses associated to
each anomalous state, which defines a partial order on the
global hypothesis set in the negative direction.

Hypothesis verification: Each hypothesis is simulated
against the state model until a match is found. The
simulator varies the weight of the components in the
model to reflect the hypothesized condition of the
component. A weight of 0 means the component is

completely malfunctioning. If the simulated output state
matches all of the actual states, within a certain tolerance,
the hypothesis is acceptable, otherwise it fails.

Solution determination: If at least one hypothesis is
found, the system will begin searching for possible
solutions. The same algorithm used for the hypothesis
determination and simulation is repeated for solution
determination and simulation. The global domain of the
LDS theory in this part of the application is the set of all
status values of the state model, and the triples are
indexed by  the set of all components in the state model.
An example of a solution would be a set of status values of
relevant components.  Such set represents a sequence of
commands that change the status of the components.
Other solutions may not be as easily identified.  When a
hypothesis is suggested for an anomaly, the associated
belief function defines a partial order to the set of
solutions associated to all blamed components in the
hypothesis. These solutions are simulated against the
model, and if the simulated state is expected, the solution
is acceptable.

If one or more solutions are found, commands are
invoked or an operator is notified of the action needed to
fix the anomaly. After the command procedure has
executed onboard the spacecraft, subsequent processing
confirms that the problem has actually been fixed.

Revision Process

An operational spacecraft is a dynamic system, and
hence the state model and simulator used to monitor and
diagnose satellite behavior must be revised frequently to
reflect the current state of the spacecraft. When a known
state transition takes place, whether initiated
automatically by AMTAS or manually by the ground
control center, the new state is verified by a state
verification process. After which, a revision process takes
place. This includes:

• Updating the current status values of subsystems.
• Updating the probabilistic knowledge including the

local domain, solution sets and mass functions
associated to the event.

• The resolved problem is added to the casebase and
linked to the anomalous state in the state model, or a
new state is added to the state model if it does not exist.

• If the updated mass function yields a degree of belief
close to one for this result, then new rules are added to
the rulebase to handle this well-determined anomaly in
the future.

• The functional model is revised if the expected system
behavior has changed. This may involve modifying



functions such as MATLAB functions, static values,
high/low limits, or retraining a neural network.

 The revision of the mass functions is done every time
an anomaly is resolved. The mass of the resolved
hypothesis is increased to reflect additional piece of
information. The more often a hypothesis/solution
correctly solves an anomaly,  the more likely it would be
successful in solving the same anomaly in the future.  To
revise the mass functions we define

 

 Definition 2. Let c H∈ be a component, and let { , , }A m N

be a mass function. An instance of m  with result c is a
mass function {{ }, , }c e 1 , with e c N({ }) ( )= +1 1  and

e N N( ) ( )∅ = + 1 . The revision of m is the mass function

{ A c∪ { } , m m e' = ⊕ , N + 1 }, given by definition 1.

 Definition 2 is a simplification of a more general case of
multiple fault situation where the accepted hypothesis C
consists of more than one faulty component.  In which

case, the mass function e on the power set 2C  is slightly
more complicated. For single fault hypothesis, the revised
mass function can be simplified to:

 ′ = +m S m S N N( ) ( ) ( )1  if S does not contain c,

 ′ = + − +m S m S m S c N( ) ( ) ( { }) ( )1 , if S contains c,

 where m(S) in the second equation is taken to be zero if A
does not contain c. It is clear from definition 2 that, given
a new evidence, c, the mass of a hypothesis that contains c
is increased, otherwise it is decreased.  The domain of the
revised mass function is increased to include the new
hypothesis if it is not already in the domain . The sample
size of the revised mass function is increased by 1. The
larger the sample size, the more believable the mass
function becomes. In practice mass functions are initially
given by human expert, which usually come from an ad
hoc estimate and may not be derived from actual series of
experiments. However, the sample size is not critical to
our application. It simply reflects the level of confidence
the experts have on their estimation of the mass function.
It serves as a starting point for the revision algorithm. We
conclude this section with the following results:

 Proposition 1. Let { , , }A m N0 0 0  be a mass function

associated to an anomalous state x. Let x ii , , , , ...= 1 2 3 , be

a series of anomalies, with each x i = x, and each is

resolved by the same hypothesis c H∈ . Let { , , }A m Ni i i

be the revised mass function obtained after resolving the i-
th anomaly. Then

1) A A c N N ii i= ∪ = +{ }, ,    and for B A c⊆ ∪{ }

 m B m B N N ii ( ) ( ) ( )= +0   if c is not in B and

 m B m B m B c i N ii ( ) ( ) ( { }) ( )= + − ⋅ +0 0 otherwise

2) lim ( )
i

im B
→∞

= 0  if B does not contain c, and

 lim ( ) ( ) ( { })
i

im B m B m B c
→∞

= + −0 0  if B contains c

3) lim ( ) ,
i

ib B
→∞

= 1 if B c= { }.  The converse is true if either

m 0 ( )∅ or m c0 ({ }) is non zero.

 Proposition 1.3 confirms the claim that when an anomaly
reoccurs many times, the limit of the mass function yields
a degree of belief of one for the anomaly.  This implies
that the anomaly is now well understood. In which case, a
set of rules should be added into the rule base component
to handle this anomaly in the future.  The proofs of both
propositions are straight forward and are left as an
exercise.

 In case of multiple hypotheses, similar revision results
also exist but in a slightly more complicated form.

Conclusion

This paper describes a novel approach to trend analysis
and diagnosis using multimodal reasoning with an
emphasis on model-based reasoning. The purpose of this
approach is to improve the way trend analysis and
diagnosis is currently performed in NASA control centers.
We are in the process of implementing a prototype system
based on these concepts using MATLAB. This prototype
may serve as a basis for a full implementation if
successful.
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